Abstract

The Industrial Internet of Things (IIoT) is a key element of industry 4.0, bringing together modern sensor technology, fog and cloud computing platforms, and artificial intelligence to create smart, self-optimizing industrial equipment and facilities. Though, the scale and sensitivity degree of information continuously increases, giving rise to serious privacy concerns. The scope of this article is to provide efficient privacy preservation techniques, by tracking the correlation of multivariate streams recorded in a network of IIoT devices. The time-varying data covariance matrix is used to add noise that cannot be easily removed by filtering, generating obfuscated measurements and, thus, preventing unauthorized access to the original data. To improve communication efficiency between connected IoT devices, we exploit inherent properties of the correlation matrices, and track the essential correlations from a small subset of correlation values. Extensive simulation studies using constrained IIoT devices validate the robustness, efficiency, and effectiveness of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.