Abstract
Since recommendation systems play an important role in the current situations where such digital transformation is highly demanded, the privacy of the individuals’ collected data in the systems must be secured effectively. In this paper, the vulnerability of the existing query framework for the recommendation systems is identified. Thus, we propose to apply the well-known k-anonymity model to generalize the given recommendation databases to satisfy the privacy preservation constraint. We show that such data generalization problem which minimizes the impact on data utility is NP-hard. To tackle with such problem, an algorithm to preserve the privacy of the individuals in the recommendation databases is proposed. The idea is to avoid excessive generalizing on the databases by forming a group of similar tuples in the databases. Thus, the impact on the data utility of the generalizing such group can be minimized. Our work is evaluated by extensive experiments. From the results, it is found that our work is highly effective, i.e., the impact quantified by the data utility metrics and the errors of the query results are less than the compared algorithms, and also it is highly efficient, i.e., the execution time is less than the result of its effectiveness-comparable algorithm by more than three times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.