Abstract

Anonymization of social networks before they are published or shared has become an important research question. Recent work on anonymizing social networks has looked at privacy preserving techniques for publishing a single instance of the network. However, social networks evolve and a single instance is inadequate for analyzing the evolution of the social network or for performing any longitudinal data analysis. We study the problem of repeatedly publishing social network data as the network evolves, while preserving privacy of users. Publishing multiple instances of the same network independently has privacy risks, since stitching the information together may allow an adversary to identify users in the networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.