Abstract

This article examines a new problem of k -anonymity with respect to a reference dataset in privacy-aware location data publishing: given a user dataset and a sensitive event dataset, we want to generalize the user dataset such that by joining it with the event dataset through location, each event is covered by at least k users. Existing k -anonymity algorithms generalize every k user locations to the same vague value, regardless of the events. Therefore, they tend to overprotect against the privacy compromise and make the published data less useful. In this article, we propose a new generalization paradigm called local enlargement , as opposed to conventional hierarchy- or partition-based generalization. Local enlargement guarantees that user locations are enlarged just enough to cover all events k times, and thus maximize the usefulness of the published data. We develop an O ( H n )-approximate algorithm under the local enlargement paradigm, where n is the maximum number of events a user could possibly cover and H n is the Harmonic number of n . With strong pruning techniques and mathematical analysis, we show that it runs efficiently and that the generalized user locations are up to several orders of magnitude smaller than those by the existing algorithms. In addition, it is robust enough to protect against various privacy attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.