Abstract

As one of the cyber–physical–social systems that plays a key role in people's daily activities, a smart city is producing a considerable amount of industrial data associated with transportation, healthcare, business, social activities, and so on. Effectively and efficiently fusing and mining such data from multiple sources can contribute much to the development and improvements of various smart city applications. However, the industrial data collected from the smart city are often sensitive and contain partial user privacy such as spatial–temporal context information. Therefore, it is becoming a necessity to secure user privacy hidden in the smart city data before these data are integrated together for further mining, analyses, and prediction. However, due to the inherent tradeoff between data privacy and data availability, it is often a challenging task to protect users’ context privacy while guaranteeing accurate data analysis and prediction results after data fusion. Considering this challenge, a novel privacy-aware data fusion and prediction approach for the smart city industrial environment is put forward in this article, which is based on the classic locality-sensitive hashing technique. At last, our proposal is evaluated by a set of experiments based on a real-world dataset. Experimental results show better prediction performances of our approach compared to other competitive ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.