Abstract
Vehicular networks require secure communication, especially for safety applications. A public key infrastructure using a Combinatorial Certificate Scheme was implemented in the US Vehicle Infrastructure Integration (VII) Proof-of- Concept (PoC) trial to secure V2V communication and preserve vehicle privacy. This paper analyzes the privacy and scalability of the Combinatorial Certificate approach for a nationwide network of 200 million vehicles. It examines the tradeoffs between privacy, the ability to efficiently detect and remove bad actors, and the need to minimize the impact on innocent vehicles due to revocation and replacement of compromised shared certificates. Key findings include the level of vehicle anonymity that exists in situations of low vehicular density and the impact that certificate revocations have on innocent vehicles. A refinement to the Combinatorial Certificate Scheme is described that improves the innocent vehicle re-key quota lifetime by an order of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.