Abstract

Abstract Pristine, reduced, and alkylated graphene oxides are applied as lubricating additives in paraffin grease. It has revealed that their crystalline structure governs the tribological properties of grease for steel tribo-pair. The microstructural analyses of grease samples showed that a loose fiber network of soap in the presence of graphene-based additive allows their facile release for efficient lubrication. The surface analyses based on the microscopic and elemental mapping show the development of a graphene-derived protective film on the worn scars, which protected the tribo-surfaces and subsided the wear. The reduced graphene oxide (rGO) with the interlamellar distance of 0.35 nm in the (002) plane provided minimum resistance to shear and exhibited maximum reduction in coefficient of friction (COF) for the paraffin grease. The presence of oxygen functionalities in the basal of pristine and alkylated graphene oxide (GO) compromised the interlamellar shearing under tribo-stress; consequently, higher COF than that of rGO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.