Abstract

A better understanding of bacterial communities and metabolomic responses to pristine zinc oxide manufacture nanoparticles (ZnO MNPs) and its sulfidized product (s-ZnO MNPs), as well as their corresponding Zn ions in rhizocompartments, critical in the plant-microbe interactions, could contribute to the sustainable development of nano-enabled agriculture. In this study, soybean (Glycine max) were cultivated in soils amended with three Zn forms, namely ZnSO4·7H2O, ZnO MNPs and s-ZnO MNPs at 0, 100 and 500 mg·kg−1 for 70 days. Three Zn forms exposures profoundly decreased the bacterial alpha diversity in roots and nodules. High dose (500 mg·kg−1) groups had a stronger impact on the bacterial beta diversity than low dose (100 mg·kg−1) groups. In the rhizosphere soil and roots, 500 mg·kg−1 of ZnSO4 and s-ZnO MNPs treatments showed the largest shifts in bacterial community structure, respectively. In addition, several significant changed bacterial taxa and metabolites were found at the high dose groups, which were associated with carbon and nitrogen metabolism. PLS-DA plot showed good discrimination in metabolomic profiles of rhizosphere soil and roots between three Zn forms treatments and control. Most metabolic pathways perturbed were closely linked to oxidative stress. Overall, our study indicates either dissolved or nano-particulate Zn exposure at high dose can drastically affected bacterial communities and metabolite profiles in soybean rhizocompartments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call