Abstract
It has been shown that checkpoint kinase inhibitors can enhance chemosensitivity to gemcitabine by disrupting the replication stress response (RSR). In the present study, we aimed to describe the chemical synthetic lethal effects of the combination of gemcitabine and quinone-methide triterpenoid pristimerin in pancreatic cancer (PC) cells. The drug interaction assay indicated effective synergy between gemcitabine and pristimerin at sub-IC50 concentrations. Interestingly, pristimerin induced lysosomal degradation of checkpoint kinase 1 (Chk1), decreased the percentage of cells at the G1/S boundary and triggered significant double-stranded DNA breaks compared to gemcitabine treatment alone. Moreover, gemcitabine activated the phosphorylation of Chk1 and induced the formation of poly (ADP-ribose) polymers (PARs) as well as the accumulation of 53BP1, which was either partially or completely impaired by pristimerin. Meanwhile, pristimerin augmented the expression of γH2AX upon gemcitabine treatment. Finally, the combination of gemcitabine with pristimerin increased the apoptotic potential of PC cells. These results show that pristimerin acts as a naturally occurring inhibitor of RSR, and a novel therapeutic strategy of combining pristimerin and gemcitabine deserves further detailed investigation in PC models in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.