Abstract

BackgroundPristimerin, a natural flavonoid compound, has potential anti-tumor activities. These activities have been illustrated in various cancer cell lines, including MDA-MB-231 cells. MDA-MB-231 cells are a representative mesenchymal subtype of triple negative breast cancer (MES-TNBC) cell line. Currently, the main treatment for patients with advanced MES-TNBC is cytotoxic chemotherapy. We tried to examine the role and effect of pristimerin on epithelial–mesenchymal transition (EMT) in MDA-MB-231 cells. MethodsThe effects of pristimerin on the proliferation of MDA-MB-231 cells were investigated by cloning formation growth assay. In vitro transwell and adhesion assays were performed for cell invasion and adhesion. The expression levels of EMT markers in E-cadherin and N-cadherin were examined by western blotting. We also established overexpressed- and silenced-integrin β3 cell lines to evaluate the role of integrin β3 in mediating the EMT reversion events in MDA-MB-231 cells. ResultsPristimerin inhibited cell proliferation, and its inhibitory effect was dose-dependent. We demonstrated that pristimerin reserved EMT by upregulating E-cadherin and downregulating N-cadherin expression. Meanwhile, we revealed that pristimerin inhibited mRNA and protein expression of integrin β3, which is a key heterodimeric transmembrane receptor associated with EMT. These inhibitory effects and reversion of EMT were enhanced when integrin β3 was knockdown in MDA-MB-231 cells, while the overexpression of integrin β3 attenuated these effects. In vivo studies using xenograft mouse model demonstrated that pristimerin inhibited tumor growth. ConclusionsOur findings provide important insights into the effects of pristimerin on inhibiting cancer progression and EMT reversion by suppression of integrin β3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call