Abstract

Basal plane slip is the most frequently observed deformation mechanism in 4H-type silicon carbon (4H-SiC) single crystals grown by the physical vapor transport (PVT) method. However, it was recently reported that dislocations in such crystals can also glide in prismatic slip systems. In this study, we observed nonuniform distributions of three sets of prismatic dislocations in a commercial 4H-SiC substrate wafer. The nonuniformity is a result of the distribution of resolved shear stress on each prismatic slip system caused by radial thermal gradients in the growing crystal boule. A radial thermal model has been developed to estimate the thermal stress across the entire area of the crystal boule during PVT growth. The model results show excellent agreement with the observations, confirming that radial thermal gradients play a key role in activating prismatic slip in 4H-SiC during bulk growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.