Abstract

This work addresses the computation of stiffness matrices for general prismatic structures with an arbitrary cross section. The presented approach is based on the scaled boundary finite element method (SBFEM), a semi-analytical method, which can be used to model structures by only discretizing the boundary of a domain. For prismatic structures, the process is further simplified, as only the cross section of the structure has to be discretized. Thus, a particular semi-analytical finite element is constructed for bounded and unbounded domains. The proposed approach leads to a frequency-dependent stiffness matrix. This stiffness matrix can easily be coupled to other prismatic SBFEM domains or general SBFEM domains. Necessary modifications to include forces along the scaling direction, such as body loads, are addressed. The results of the proposed approach are compared to those of traditional FEM models obtained using commercially available software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call