Abstract

As-grown diamond single crystals grown from Fe–Ni–C system under high temperature–high pressure were examined by transmission electron microscopy. There exist prismatic dislocation loops and concentric dislocation loops in the diamond, which are related to the nonequilibrium nature of the diamond synthesis process. The prismatic dislocation loops may be formed by vacancy condensation during rapid cooling from high temperature, and the Burgers vector of the dislocation is determined by diffraction contrast as 1/2〈1 1 0〉. Moiré fringes formed by two overlapping (1 1 1) close-packed planes were used to study concentric dislocation loops. The concentric dislocation loops may be derived from thermal stress caused by the inclusions in the diamond, which cause a strain field due to the thermal contraction difference between the inclusions and the diamond during cooling from high temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.