Abstract

We demonstrate a genuine method for three-dimensional pictorial reconstructions of two-dimensional, three-dimensional, and hybrid specimens based on confocal Raman data collected in a back-scattering geometry of a 532-nm setup. The protocol, or the titular PRISM (Phase-Resolved Imaging Spectroscopic Method), allows for sub-diffractive and material-resolved imaging of the object’s constituent material phases. The spacial component comes through either the signal distal attenuation ratio (direct mode) or subtle light-matter interactions, including interference enhancement and light absorption (indirect mode). The phase component is brought about by scrutinizing only selected Raman-active modes. We illustrate the PRISM approach in common real-life examples, including photolithographically structured amorphous Al2O3, reactive-ion-etched homoepitaxial SiC, and Chemical Vapor Deposition graphene transferred from copper foil onto a Si substrate and AlGaN microcolumns. The method is implementable in widespread Raman apparatus and offers a leap in the quality of materials imaging. The lateral resolution of PRISM is stage-limited by step motors to 100 nm. At the same time, the vertical accuracy is estimated at a nanometer scale due to the sensitivity of one of the applied phenomena (interference enhancement) to the physical property of the material (layer thickness).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.