Abstract

Given the pervasive use of wireless systems, based on the IEEE 802.11 and LTE standards, Peer-to-Peer (P2P) networks take relevance due to their inherent flexibility and scalability. In a mobile environment, users experience different channel conditions. This has a major impact on the system’s performance as it is perceived by users in different coverage zones. Additionally, users have different degrees of mobility which can improve or degrade the quality of the received signal. In this work, a wireless mobile P2P network is studied. Building on this, two different scenarios are considered. Namely, a WLAN environment where nodes usually know the placement of the access point and can move closer to it in order to improve their channel quality and a cellular system where nodes usually do not know where their attending base station is located. Building on this, a priority model to improve the system’s performance is proposed, studied and analyzed. This priority scheme is based on serving first users that experience a better channel condition in order to improve the file downloading process. The aforementioned networks are analyzed using both a fluid model and a Continuous Time Markov Chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.