Abstract

The authors examine the design, implementation, and experimental analysis of parallel priority queues for device and network simulation. They consider: 1) distributed splay trees using MPI; 2) concurrent heaps using shared memory atomic locks; and 3) a new, more general concurrent data structure based on distributed sorted lists, designed to provide dynamically balanced work allocation and efficient use of shared memory resources. We evaluate performance for all three data structures on a Cray-TSESOO system at KFA-Julich. Our comparisons are based on simulations of single buffers and a 64/spl times/64 packet switch which supports multicasting. In all implementations, PEs monitor traffic at their preassigned input/output ports, while priority queue elements are distributed across the Cray-TBE virtual shared memory. Our experiments with up to 60000 packets and two to 64 PEs indicate that concurrent priority queues perform much better than distributed ones. Both concurrent implementations have comparable performance, while our new data structure uses less memory and has been further optimized. We also consider parallel simulation for symmetric networks by sorting integer conflict functions and implementing a packet indexing scheme. The optimized message passing network simulator can process /spl sim/500 K packet moves in one second, with an efficiency that exceeds /spl sim/50 percent for a few thousand packets on the Cray-T3E with 32 PEs. All developed data structures form a parallel library. Although our concurrent implementations use the Cray-TSE ShMem library, portability can be derived from Open-MP or MP1-2 standard libraries, which will provide support for one-way communication and shared memory lock mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.