Abstract

In real-time systems with threads, resource locking and priority scheduling, one faces the problem of Priority Inversion. This problem can make the behaviour of threads unpredictable and the resulting bugs can be hard to find. The Priority Inheritance Protocol is one solution implemented in many systems for solving this problem, but the correctness of this solution has never been formally verified in a theorem prover. As already pointed out in the literature, the original informal investigation of the Property Inheritance Protocol presents a correctness “proof” for an incorrect algorithm. In this paper we fix the problem of this proof by making all notions precise and implementing a variant of a solution proposed earlier. We also generalise the scheduling problem to the practically relevant case where critical sections can overlap. Our formalisation in Isabelle/HOL is based on Paulson’s inductive approach to protocol verification. The formalisation not only uncovers facts overlooked in the literature, but also helps with an efficient implementation of this protocol. Earlier implementations were criticised as too inefficient. Our implementation builds on top of the small PINTOS operating system used for teaching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.