Abstract

Sparse-view Computed Tomography (CT) plays an important role in industrial inspection and medical diagnosis. However, the established reconstruction equations based on traditional Radon transform are ill-posed and obtain an approximate solution in the case of finite sampling angles. By contrast, Mojette transform is considered as the discrete geometry of the projection and reconstruction lattice. It determines the geometrical conditions for ensuring a unique solution instead of solving an ill-posed problem from the start. Therefore, Mojette transform results in theoretical exact image reconstruction in the discrete domain, and approximately gets the minimum number of projections, as well as their directions. However, the reconstruction method utilizing Mojette transform is very sensitive to noise. To address the problem, the paper proposes a sparse-view Mojette inversion algorithm based on the minimum noise accumulation by selecting the prioritized projections for an image reconstruction. Experimental results show that the proposed method can effectively suppress the noise accumulation without increasing the number of projections and produce better reconstruction results than traditional corner-based Mojette inversion (CBI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.