Abstract

Prioritizing the prevention and control of non-native invasive species requires understanding where introductions are likely to occur and cause harm. We developed predictive models for Eurasian watermilfoil (EWM) (Myriophyllum spicatum L.) occurrence and abundance to produce a smart prioritization tool for EWM management. We used generalized linear models (GLMs) to predict species occurrence and extended beta regression models to predict abundance from data collected on 657 Wisconsin lakes. Species occurrence was positively related to the nearby density of vehicle roads, maximum air temperature, lake surface area, and maximum lake depth. Species occurrence was negatively related to near-surface lithological calcium oxide content, annual air temperature range, and average distance to all known source populations. EWM abundance was positively associated with conductivity, maximum air temperature, mean distance to source, and soil erodibility, and negatively related to % surface rock calcium oxide content and annual temperature range. We extended the models to generate occurrence and predictions for all lakes in Wisconsin greater than 1 ha (N = 9825), then prioritized prevention and management, placing highest priority on lakes likely to experience EWM introductions and support abundant populations. This modelling effort revealed that, although EWM has been present for several decades, many lakes are still vulnerable to introduction.

Highlights

  • Non-native species are a leading driver of global environmental change

  • Eurasian watermilfoil is an invasive aquatic plant that can grow to high abundance in certain freshwater systems

  • We described watershed geological characteristics using the whole-rock percentage of calcium oxide (CaO) in near-surface geology and soil erodibility (K-factor) [44,45]

Read more

Summary

Introduction

Non-native species are a leading driver of global environmental change. They can alter ecosystem structure and function and decrease global biodiversity [1,2,3,4]. They are economically costly and can pose hazards to human health [5,6]. Invasive species have been recorded from over half the extant phyla and divisions, and their modes of impact are as diverse as the invaders themselves [7,8,9,10]. The vulnerability of any given area to invasive species is a central concern for ecologists and natural resource managers.

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.