Abstract

In response to the coronavirus disease 2019 (COVID-19) pandemic, Japan conducted mass vaccination. Seventy-two million doses of vaccine (i.e., for 36 million people if a double dose is planned per person) were obtained, with initial vaccination of the older population (≡ 65 years). Because of the limited number of vaccines, the government discussed shifting the plan to administering only a single dose so that younger individuals (<65 years) could also be vaccinated with one shot. This study aimed to determine the optimal vaccine distribution strategy using a simple mathematical method. After accounting for age-dependent relative susceptibility after single- and double-dose vaccination (vs and vd, respectively, compared with unvaccinated), we used the age-dependent transmission model to compute the final size for various patterns of vaccine distributions. Depending on the values of vs, the cumulative risk of death would be lower if all 72 million doses were used as a double dose for older people than if a single-dose program was conducted in which half is administered to older people and the other half is administered to adults (i.e., 1,856,000 deaths in the former program and 1,833,000-2,355,000 deaths [depending on the values of vs] in the latter). Even if 90% of older people were vaccinated twice and 100% of adults were vaccinated once, the effective reproduction number would be reduced from 2.50 to1.14. Additionally, the cumulative risk of infection would range from 12.0% to 54.6% and there would be 421,000-1,588,000deaths (depending on the values of vs). If an epidemic appears only after completing vaccination, vaccination coverage using a single-dose program with widespread vaccination among adults will not outperform a double-dose strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call