Abstract

AbstractMany process control problems encapsulate multiple and often conflicting objective criteria spanning different levels of relative importance. In this paper, we consider a class of multi‐objective receding horizon optimal control problems and propose a novel multi‐objective model predictive control (MO‐MPC) scheme for nonlinear systems subject to constraints and several prioritized (economic) criteria. Combining the lexicographic optimization and the receding horizon principle, a prioritized MO‐MPC scheme without terminal constraints is presented to solve economically optimal control problems of the constrained nonlinear system. The results on recursive feasibility and stability of the MO‐MPC are established in the context of economy optimization and no terminal constraints. Particularly, for the systems without state constraints, the computational burden of the MO‐MPC is reduced due to the removal of terminal constraints. Using an intuitive optimizaiton, the feasible set of initial states is offline estimated to move out the initial feasibility condition. The proposed MO‐MPC strategy is verified by the multiple control problems of a coupled‐tank system and a six‐order fluidized bed combustion process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.