Abstract

Dimensioning procedures for prioritized channel assignment in a cellular radio network are considered. Under the cutoff priority discipline, the prioritized channel assignment procedures for a single cell and multicell system are formulated as nonlinear discrete capacity allocation problems. Exact incremental algorithms which efficiently solve the proposed problems are devised. They are based on the properties of the blocking probabilities of new calls and handoff calls. Given the number of available frequency channels together with the arrival rates and the grade of service (GOS) for both types of calls in each cell, algorithm SP1 generates an optimal channel assignment which ensures priority for handoff calls. Given the arrival rates and distinct GOSs for new and handoff calls, algorithm SP2 finds the minimum number of channels required in each cell. Algorithm MP extends algorithm SP1 to a multicell system and provides the prioritized channel assignment for all calls in the system. The algorithms are very fast and are appropriate for the fair allocation of frequency channels among cells.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.