Abstract
In electroencephalography (EEG) source imaging, the inverse source estimates are depth biased in such a way that their maxima are often close to the sensors. This depth bias can be quantified by inspecting the statistics (mean and covariance) of these estimates. In this paper, we find weighting factors within a Bayesian framework for the used \(\ell _1/\ell _2\) sparsity prior that the resulting maximum a posterior (MAP) estimates do not favour any particular source location. Due to the lack of an analytical expression for the MAP estimate when this sparsity prior is used, we solve the weights indirectly. First, we calculate the Gaussian prior variances that lead to depth un-biased maximum a posterior (MAP) estimates. Subsequently, we approximate the corresponding weight factors in the sparsity prior based on the solved Gaussian prior variances. Finally, we reconstruct focal source configurations using the sparsity prior with the proposed weights and two other commonly used choices of weights that can be found in literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.