Abstract

This paper investigates a fall detection system based on the integration of an inertial measurement unit with a barometric altimeter (BIMU). The vertical motion of the body part the BIMU was attached to was monitored on-line using a method that delivered drift-free estimates of the vertical velocity and estimates of the height change from the floor. The experimental study included activities of daily living of seven types and falls of five types, simulated by a cohort of 25 young healthy adults. The downward vertical velocity was thresholded at 1.38 m/s, yielding 80% sensitivity (SE), 100% specificity (SP) and a mean prior-to-impact time of 157 ms (range 40-300 ms). The soft falls, i.e., those with downward vertical velocity above 0.55 m/s and below 1.38 m/s were analyzed post-impact. Six fall detection methods, tuned to achieve 100% SE, were considered to include features of impact, change of posture and height, singularly or in association with one another. No single feature allowed for 100% SP. The detection accuracy marginally improved when the height change was considered in association with either the impact or the change of posture; the post-impact fall detection method that analyzed the impact and the change of posture together achieved 100% SP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.