Abstract
We propose prior distributions for all parts of the specification of a Markov mesh model. In the formulation we define priors for the sequential neighborhood, for the parametric form of the conditional distributions and for the parameter values. By simulating from the resulting posterior distribution when conditioning on an observed scene, we thereby obtain an automatic model selection procedure for Markov mesh models. To sample from such a posterior distribution, we construct a reversible jump Markov chain Monte Carlo algorithm (RJMCMC). We demonstrate the usefulness of our prior formulation and the limitations of our RJMCMC algorithm in two examples.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.