Abstract

Variants of fluctuation theorems recently discovered in the statistical mechanics of nonequilibrium processes may be used for the efficient determination of high-dimensional integrals as typically occurring in Bayesian data analysis. In particular for multimodal distributions, Monte Carlo procedures not relying on perfect equilibration are advantageous. We provide a comprehensive statistical error analysis for the determination of the prior-predictive value (the evidence) in a Bayes problem, building on a variant of the Jarzynski equation. Special care is devoted to the characterization of the bias intrinsic to the method and statistical errors arising from exponential averages. We also discuss the determination of averages over multimodal posterior distributions with the help of a consequence of the Crooks relation. All our findings are verified by extensive numerical simulations of two model systems with bimodal likelihoods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.