Abstract

Causal inference has become an important research direction in the field of computing. Traditional methods have mainly used Bayesian networks to discover the causal effects between variables. These methods have limitations, namely, on the one hand, the computing cost is expensive if one wants to achieve accurate results, i.e., exponential growth along with the number of variables. On the other hand, the accuracy is not good enough if one tries to reduce the computing cost. In this study, we use prior knowledge iteration or time series trend fitting between causal variables to resolve the limitations and discover bidirectional causal edges between the variables. Subsequently, we obtain real causal graphs, thus establishing a more accurate causal model for the evaluation and calculation of causal effects. We present two new algorithms, namely, the PC+ algorithm and the DCM algorithm. The PC+ algorithm is used to address the problem of the traditional PC algorithm, which needs to enumerate all Markov equivalence classes at a high computational cost or with immediate output of non-directional causal edges. In the PC+ algorithm, the causal tendency among some variables was analyzed via partial exhaustive analysis. By fixing the relatively certain causality as prior knowledge, a causal graph of higher accuracy is the final output at a low running cost. The DCM algorithm uses the d-separation strategy to improve the traditional CCM algorithm, which can only handle the pairwise fitting of variables, and thus identify the indirect causality as the direct one. By using the d-separation strategy, our DCM algorithm achieves higher accuracy while following the basic criteria of Bayesian networks. In this study, we evaluate the proposed algorithms based on the COVID-19 pandemic with experimental and theoretical analysis. The experimental results show that our improved algorithms are effective and efficient. Compared to the exponential cost of the PC algorithm, the time complexity of the PC+ algorithm is reduced to a linear level. Moreover, the accuracies of the PC+ algorithm and DCM algorithm are improved to different degrees; specifically, the accuracy of the PC+ algorithm reaches 91%, much higher than the 33% of the PC algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.