Abstract
BackgroundPhoton counting detector computed tomography (PCD-CT) is a novel promising technique providing higher spatial resolution, lower radiation dose and greater energy spectrum differentiation, which create more possibilities to improve image quality. Multi-material decomposition is an attractive application for PCD-CT to identify complicated materials and provide accurate quantitative analysis. However, limited by the finite photon counting rate in each energy window of photon counting detector, the noise problem hinders the decomposition of high-quality basis material images. MethodsTo address this issue, an end-to-end multi-material decomposition network based on prior images is proposed in this paper. First, the reconstructed images corresponding to the full spectrum with less noise are introduced as prior information to improve the overall signal-to-noise ratio of the data. Then, a generative adversarial network is designed to mine the relationship between reconstructed images and basis material images based on the information interaction of material decomposition. Furthermore, a weighted edge loss is introduced to adapt to the structural differences of different basis material images. ResultsTo verify the performance of the proposed method, simulation and real studies are carried out. In simulation study of structured fibro-glandular tissue model, the results show that the proposed method decreased the root mean square error by 67 % and 26 % on adipose, 66 % and 28 % on fibroglandular, 52 % and 8 % on calcification, compared to butterfly network and dual interactive Wasserstein generative adversarial network. ConclusionExperimentally, the proposed method shows certain advantages over other methods on noise suppression effect, detail retention ability and decomposition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.