Abstract

Imaging through scattering medium based on deep learning has been extensively studied. However, existing methods mainly utilize paired data-prior and lack physical-process fusion, and it is difficult to reconstruct hidden targets without the trained networks. This paper proposes an unsupervised neural network that integrates the universal physical process. The reconstruction process of the network is irrelevant to the system and only requires one frame speckle pattern and unpaired targets. The proposed network enables online optimization by using physical process instead of fitting data. Thus, large-scale paired data no longer need to be obtained to train the network in advance, and the proposed method does not need prior information. The optimization of the network is a physical-based process rather than a data mapping process, and the proposed method also increases the insufficient generalization ability of the learning-based method in scattering medium and targets. The universal applicability of the proposed method to different optical systems increases the likelihood that the method will be used in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.