Abstract
SummaryBayes factors that do not require prior distributions are proposed for testing one parametric model versus another. These Bayes factors are relatively simple to compute, relying only on maximum likelihood estimates, and are Bayes consistent at an exponential rate for nested models even when the smaller model is true. These desirable properties derive from the use of data splitting. Large sample properties, including consistency, of the Bayes factors are derived, and a simulation study explores practical concerns. The methodology is illustrated with civil engineering data involving compressive strength of concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.