Abstract
Prions are infectious agents causing transmissible spongiform encephalopathies in humans and animals. These protein-based particles template conformational changes in a host-encoded prion protein to an insoluble self-like conformation. Prions are also present in yeast, where they support protein-based epigenetic inheritance. There is emerging evidence that prion-like (prionoid) particles can support a variety of pathological and beneficial functions. The recent data on the prionoid spread of other pathological amyloids are discussed in light of differences between prions and prion-like aggregates. On the other hand, prion-like action has also been found to support important functions such as memory, and amyloids were shown to have a variety of physiological roles from storage to scaffolding in simple organisms and in humans. Higher-order protein complexes play important roles in signalling. Many death-fold domains can polymerise upon nucleation to enhance sensitivity and induce a robust response. Although these polymers are structurally different from amyloids, some of them are characterised by prionoid activities, such as intercellular spread. The initial activation of these complexes is vital for organismal health, whereas prolonged activation leading to unresolved inflammation underlies autoinflammatory and other diseases. Prionoid complexes play important roles far beyond prion diseases and neurodegeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.