Abstract

Prion diseases are neurodegenerative disorders where infectious prion proteins (PrP) accumulate in brain leading to aggregation of amyloid fibrils and neuronal cell death. The amino acid sequence 106–126 from prion proteins, PrP(106–126), is highly amyloidogenic and implicated in prion-induced pathologies. As PrP is known to be expressed in blood following leakage from brain tissue, we sought to investigate its biological effects on human platelets, which have been widely employed as ‘peripheral’ model for neurons. Our findings suggested that, PrP(106–126) (20μM) induced dramatic 30-fold rise in intracellular calcium (from 105±30 to 3425±525nM) in platelets, which was attributable to influx from extracellular fluid with comparatively less contribution from intracellular stores. Calcium mobilization was associated with 8–10-fold stimulation in the activity of thiol protease calpain that led to partial cleavage of cytoskeleton-associated protein talin and extensive shedding of microparticles from platelets, thus transforming platelets to ‘activated’ phenotype. Both proteolysis of talin and microparticle release were precluded by calpeptin, a specific inhibitor of calpain. As microparticles are endowed with phosphatidylserine-enriched surface and hence are pro-coagulant in nature, exposure to prion favored a thrombogenic state in the organism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.