Abstract

The microtubule-associated protein Tau plays a key role in the neuropathology of Alzheimer's disease by forming intracellular neurofibrillary tangles. Tau in the normal physiological condition helps stabilize microtubules and transport. Tau aggregates due to various gene mutations, intracellular insults and abnormal post-translational modifications, phosphorylation being the most important one. Other modifications which alter the function of Tau protein are glycation, nitration, acetylation, methylation, oxidation, etc. In addition to forming intracellular aggregates, Tau pathology might spread in a prion-like manner as revealed by several in vitro and in vivo studies. The possible mechanism of Tau spread can be via bulk endocytosis of misfolded Tau species. The recent studies elucidating this mechanism have mainly focussed on the aggregation and spread of repeat domain of Tau in the cell culture models. Further studies are needed to elucidate the prion-like propagation property of full-length Tau and its aggregates in a more intense manner in vitro as well as in vivo conditions. Varied post-translational modifications can have discrete effects on aggregation propensity of Tau as well as its propagation. Here, we review the prion-like properties of Tau and hypothesize the role of glycation in prion-like properties of Tau. This post-translationally modified Tau might have an enhanced propagation property due to differential properties conferred by the modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call