Abstract

Prion diseases are a group of neurodegenerative disorders that can be spontaneous, familial or acquired by infection. The conversion of the prion protein PrPC to its abnormal and misfolded isoform PrPSc is the main event in the pathogenesis of prion diseases of all origins. In spontaneous prion diseases, the mechanisms that trigger the formation of PrPSc in the central nervous system remain unknown. Several reports have demonstrated that the accumulation of PrPSc can induce endoplasmic reticulum (ER) stress and proteasome impairment from the early stages of the prion disease. Both mechanisms lead to an increment of PrP aggregates in the secretory pathway, which could explain the pathogenesis of spontaneous prion diseases. Here, we investigate the role of ER stress and proteasome impairment during prion disorders in a murine model of spontaneous prion disease (TgVole) co-expressing the UbG76V-GFP reporter, which allows measuring the proteasome activity in vivo. Spontaneously prion-affected mice showed a significantly higher accumulation of the PKR-like ER kinase (PERK), the ER chaperone binding immunoglobulin protein (BiP/Grp78), the ER protein disulfide isomerase (PDI) and the UbG76V-GFP reporter than age-matched controls in certain brain areas. The upregulation of PERK, BiP, PDI and ubiquitin was detected from the preclinical stage of the disease, indicating that ER stress and proteasome impairment begin at early stages of the spontaneous disease. Strong correlations were found between the deposition of these markers and neuropathological markers of prion disease in both preclinical and clinical mice. Our results suggest that both ER stress and proteasome impairment occur during the pathogenesis of spontaneous prion diseases.

Highlights

  • Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

  • The accumulation of the endoplasmic reticulum (ER) stress markers BindingTgU1 immunoglobulin protein (BiP) (Grp78), PKR-like ER kinase (PERK) and protein disulfide isomerase (PDI) was analyzed in these animals and in two groups of age-matched TgU1+ /TgVole− mice that were used as controls

  • ER stress and ubiquitin-proteasome system (UPS) impairment have been suggested to play a pathogenic role in the neurodegenerative disorders associated with the accumulation of protein aggregates [45,46,47]

Read more

Summary

Introduction

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Several reports have demonstrated that the accumulation of PrPSc can induce endoplasmic reticulum (ER) stress and proteasome impairment from the early stages of the prion disease. Both mechanisms lead to an increment of PrP aggregates in the secretory pathway, which could explain the pathogenesis of spontaneous prion diseases. Prion-affected mice showed a significantly higher accumulation of the PKR-like ER kinase (PERK), the ER chaperone binding immunoglobulin protein (BiP/Grp78), the ER protein disulfide isomerase (PDI) and the UbG76V -GFP reporter than age-matched controls in certain brain areas. Prion diseases or transmissible spongiform encephalopathies (TSE) are a group of fatal neurodegenerative disorders produced by the accumulation of the pathological prion protein (PrPSc ) in the central nervous system (CNS) of affected individuals [1]. PERK is bound to the binding immunoglobulin protein (BiP/Grp78), the principal ER chaperone, which has been suggested to be the key component for the detection of ER stress [11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call