Abstract

Expenses associated with shipping, installation, land, regulatory compliance and on-going maintenance and operations of utility-scale photovoltaics can be significantly reduced by increasing the power conversion efficiency of solar modules through improved materials, device designs and strategies for light management. Single-junction cells have performance constraints defined by their Shockley-Queisser limits. Multi-junction cells can achieve higher efficiencies, but epitaxial and current matching requirements between the single junctions in the devices hinder progress. Mechanical stacking of independent multi-junction cells circumvents these disadvantages. Here we present a fabrication approach for the realization of mechanically assembled multi-junction cells using materials and techniques compatible with large-scale manufacturing. The strategy involves printing-based stacking of microscale solar cells, sol-gel processes for interlayers with advanced optical, electrical and thermal properties, together with unusual packaging techniques, electrical matching networks, and compact ultrahigh-concentration optics. We demonstrate quadruple-junction, four-terminal solar cells with measured efficiencies of 43.9% at concentrations exceeding 1,000 suns, and modules with efficiencies of 36.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.