Abstract

Electrochemical glucose sensors that rely on two-dimensional (2D) oxides have attracted significant attention owing to the strong sensing activity of 2D oxides, but their practical application is hindered by the complexity and high cost of fabrication of electrodes and integrated devices. Herein, a convenient and effective fabrication route that includes printing a Ga-based liquid metal (LM) as a current collection electrode, followed by growing electrochemically active 2D oxides directly on the surface of Ga-based LMs under mild conditions, is developed for non-enzyme-based electrochemical sensors. Specifically, 2D annealed Cu-Oxide (ACO) is successfully grown on a printed Ga electrode through a galvanic replacement reaction, resulting in the formation of a mechanically and electrically well-matched interface between the active sensing materials and the current collection substrate. Benefitting from the high quantity of 2D ACO and good charge transfer at the interface, the as-prepared ACO electrode exhibits attractive glucose sensing performance, with a wide linear range (1 μM-10 mM) of effective detection, low detection limit down to 1 μM, and high sensitivity of 0.87 μA·mM-1·cm-2. Our study highlights the potential of using LMs in bio-sensing applications and provides a non-enzyme-based electrochemical biosensor platform for effective glucose detection in diets and clinical diagnostic settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call