Abstract

Flexible multimodal sensors with ultrasensitive detection capabilities are an indispensable component of wearable electronics and are highly sought-after involving a wide range of signal monitoring such as artificial skin and soft robotics. Here we report a flexible and wireless multimodal sensor using low-temperature additive manufacturing of copper nanoplates on elastic polyurethane substrates for temperature, pressure, and flow monitoring. The positive temperature coefficient and piezoresistive performance of the copper nanoplate network translates to a reliable temperature, steady-state and dynamic pressure/flow sensing for detecting pressures as small as 0.64 Pa with a response time of 130 ms, as well as velocity detection ranging from 2.5-6.8 m s-1. Additionally, by incorporating a printed antenna, it enables a self-powered, battery-free system, offering a wireless readout of printed multimodal sensors with superior real-time sensing performance in conjunction with wearable flexibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call