Abstract

Digital dentures can be fabricated by subtractive milling or, more recently, by 3D-printing technology. Several different 3D-printing technologies and materials are commercially available, and the differences in printing accuracy and mechanical behavior among them are unknown. Aim: This study evaluated the printing accuracy of 3D-printed denture base resins and assessed their flexural properties when compared with conventional heat-polymerized ones. Methods: A total of 40 acrylic specimens were prepared with four different materials: three 3D-printed resins, and a conventional heat polymerized resin was used as a control. The printing accuracy was evaluated by calculating the error rate of 3D-printed specimens compared with dimensions of the virtual design. Flexural strength and elastic modulus were assessed with a universal testing machine. One-way ANOVA and Kruskal–Wallis tests were used for analysis. Results: Printing accuracy across the tested materials was statistically different. Specimen length showed error rates between 1.3% and 2.4%, specimen width had error rates between 0.2% and 0.7%, and specimen thickness had error rates between 0.2% and 0.6%. Three-dimensional-printed specimens had lower flexural strength and elastic modulus values when compared with heat-polymerized specimens. Conclusions: The choice of material seems to influence printing accuracy, and to a lesser extent, flexural strength. However, it has no effect on the elastic modulus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.