Abstract

The Pacinian corpuscle is a highly sensitive mammalian sensor cell that exhibits a unique band-pass sensitivity to vibrations. The cell achieves this band-pass response through the use of 20 to 70 elastic layers entrapping layers of viscous fluid. This paper develops and explores a scalable mechanical model of the Pacinian corpuscle and uses the model to predict the response of synthetic corpuscles, which could be the basis for future vibration sensors. The −3dB point of the biological cell is accurately mimicked using the geometries and materials available with off-the-shelf 3D printers. The artificial corpuscles here are constructed using uncured photoresist within structures printed in a commercial stereolithography (SLA) 3D printer, allowing the creation of trapped fluid layers analogous to the biological cell. Multi-layer artificial Pacinian corpuscles are vibration tested over the range of 20–3000 Hz and the response is in good agreement with the model.

Highlights

  • When you run your fingers along a surface, interactions between your fingerprints and surface topography generate vibrations in your skin [1]

  • A modified Pacinian Corpuscle (PC) is modeled based on the restrictions of our fabrication process

  • The artificial PCs are subjected to indentation to determine compression

Read more

Summary

Introduction

When you run your fingers along a surface, interactions between your fingerprints and surface topography generate vibrations in your skin [1]. The Pacinian Corpuscle (PC) is the most sensitive mechanoreceptor in the human body in the range of 5 Hz–1 kHz [2,3,4,5] with a peak sensitivity at 250 Hz [6,7], and is capable of sensing vibrations with a minimum displacement of 10 nm [8]. This high sensitivity gives humans their fine sense of touch [9]. An artificial sensor based on the PC could find uses in tactile interfaces for medical instruments or prosthetics [15,16,17]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call