Abstract

Printing technologies are changing the face of electronics with features such as resource-efficiency, low-cost, and novel form factors. While significant advances have been made in terms of organic electronics, the high-performance and stable transistors by printing, and their large-scale integration leading to fast integrated circuits remains a major challenge. This is because of the difficulties to print high-mobility semiconducting materials and the lack of high-resolution printing techniques. Herein, we present silicon based printed n- and p-channel transistors to demonstrate the possibility of developing high-performance complementary metal-oxide-semiconductor (CMOS) computing architecture. The direct roll transfer printing is used here for deterministic assembly of high-mobility single crystal silicon nanoribbons arrays on a flexible polyimide substrate. This is followed by high-resolution electrohydrodynamic printing to define source/drain/gate electrodes and to encapsulate, thus leading to printed devices. The printed transistors show effective peak mobilities of 15 cm2/(V s) (n-channel) and 5 cm2/(V s) (p-channel) at low 1 V drain bias. Furthermore, the effect of electrical, mechanical, and thermal stress on the performance and stability of the encapsulated transistors is investigated. The transistors showed stable transfer characteristics even after: (i) continuous 4000 transfer cycles, (ii) excruciating 10000 bending cycles at different bending radii (40, 25, and 15 mm), and (iii) between 15 and 60 °C temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call