Abstract

Printed energy storage components attracted attention for being incorporated into bendable electronics. In this research, a homogeneous and stable ink based on vanadium dioxide (VO2) is hydrothermally synthesized with a non-toxic solvent. The structural and morphological properties of the synthesized material are determined to be well-crystalline monoclinic-phase nanoparticles. The charge storage mechanisms and evaluations are specified for VO2 electrodes, gold (Au) electrodes, and VO2/Au electrodes using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The VO2 electrode shows an electrical double layer and a redox reaction in the positive and negative voltage ranges with a slightly higher areal capacitance of 9 mF cm-2. The VO2/Au electrode exhibits an areal capacitance of 16 mF cm-2, which is double that of the VO2 electrode. Due to the excellent electrical conductivity of gold, the areal capacitance 18 mF cm-2 of the Au electrode is the highest among them. Based on that, Au positive electrodes and VO2 negative electrodes are used to build an asymmetric supercapacitor. The device delivers an areal energy density of 0.45 μWh cm-2 at an areal power density of 70 μW cm-2 at 1.4 V in the aqueous electrolyte of potassium hydroxide. We provide a promising electrode candidate for cost-effective, lightweight, environmentally friendly printed supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call