Abstract

A printed compact antenna array for small wirelessly powered device operating at 900 MHz is proposed. The prototype is developed by printing antenna pattern on a 0.1-mm-thick flexible substrate and folding the printed sheet into a rectangular volume measuring 35 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex> </formula> 56 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\,\times\,$</tex> </formula> 12 mm <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$^3$</tex> </formula> . The edge-to-edge distance between array elements is only <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$0.078~\lambda$</tex></formula> . An isolation structure is added to minimize the coupling between the elements. Measurement results show a <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$-$</tex> </formula> 27-dB minimum coupling between the elements, which yields significant gain improvement up to 3.6 dB and radiation efficiency improvement up to 28% over the design without isolation structure. When integrated with rectifier circuits, the proposed design also demonstrates superior performance by generating more dc power. The results have shown the proposed work to be a feasible solution of implementing antenna array for small device to enhance of RF power receiving capability with high compactness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.