Abstract
As one of the conductive ink materials with high electric conductivity, elemental copper (Cu) based nanocrystals promise for printable electronics. Here, single crystalline Cu nanoplates were synthesized using a facile hydrothermal method. Size engineering of Cu nanoplates can be rationalized by using the LaMer model and the versatile Cu conductive ink materials are suitable for different printing technologies. The printed Cu traces show high electric conductivity of 6 MS m−1, exhibiting electro-magnetic interference shielding efficiency value of 75 dB at an average thicknesses of 11 μm. Together with flexible alumina ceramic aerogel substrates, it kept 87% conductivity at the environmental temperature of 400 °C, demonstrating the potential of Cu conductive ink for high-temperature printable electronics applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.