Abstract

The ability to create printable ultrathin devices and transfer printing allows ‘stick and play’ electronics on unusual surfaces where direct device fabrication is not possible. This research describes a systematic method for using an additional handling substrate to mechanically support an ultrathin substrate and printing the final device on a target surface in a deterministic way. Introducing a sacrificial layer and a concave–convex structure with optimized depth, pitch, and shape at the interface between the two substrates provides both stability in device fabrication and high-yield transfer printing in a deterministic manner. To demonstrate the efficacy of this method, we successfully transferred various sizes and layouts of patterns onto various planar and curvilinear substrates. Finally, we demonstrate highly foldable and stretchable membrane-type electrodes that can be attached onto unusual surfaces, such as paper and elastic adhesive tape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call