Abstract
In the era of rapidly evolving smart electronic devices, the development of power supplies with miniaturization and versatility is imperative. Prevailing manufacturing approaches for basic energy modules impose limitations on their size and shape design. Printing is an emerging technique to fabricate energy storage systems with tailorable mass loading and compelling energy output, benefiting from elaborate structural configurations and unobstructed charge transports. The derived "printable energy storage" realm is now focusing on materials exploration, ink formulation, and device construction. This contribution aims to illustrate the current state-of-the-art in printable energy storage and identify the existing challenges in the 3D printing design of electrodes. Insights into the future outlooks and directions for the development of this field are provided, with the goal of enabling printable energy storage toward practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.