Abstract

Abstract This study develops a modified limestone calcined clay cement (LC3) composite for 3D printing, by introducing silica fume (SF) and particle packing theory. Interactions between particle packing density, rheological properties, and printability of the composites were synergistically investigated. Moreover, the ratio of the sand-to-binder (S/B) was also analyzed to explore the performance response. Results show that when composites contain 33.33 wt% calcined clay, 16.67 wt% limestone powder and 5 wt% SF with S/B ratio of 2.5, the dynamic yield stress, static yield stress, and structural recovery can be significantly improved. The proposed mortar can be continuously extruded with few defects and exhibited an excellent shape retention during printing process. Furthermore, the embodied energy (EE) and embodied carbon emissions (ECO2e) per cubic meter of optimal mortar respectively decreased by 50.2% and 45.2% with respect to the plain mortar. Finally, the employment of LC3 containing SF together with optimum particle packing system mutually contributed to lower the cement content of composites that eventually led to the development of eco-efficient printable materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.