Abstract

Ethnopharmacological relevanceAllergic contact dermatitis (ACD) is a common allergic inflammatory disease that is concomitant with skin swelling, redness, dry itching, and relapses. Prinsepia utilis Royle, a Chinese and Indian folk medicine, is rich in polyphenols with potential anti-inflammatory and skin-protective activities. However, the underlying mechanism of P. utilis leaf (PUL) in the treatment of ACD and its functional basis remains unclear. Aim of the studyThis study is aimed to explore and reveal the active substances and mechanism of PUL against ACD. Materials and methodsHyaluronidase inhibitory assay and fluorescein isothiocyanate (FITC)-induced ACD mouse model were performed to assess the antiallergic effects of PUL in vitro and in vivo. Different solvents were applied to obtain multiple PUL extracts. The extracts were further tested for total phenolic content (TPC) and total flavonoid content (TFC) by using spectrophotometric assays. Polyphenolic profiles were analyzed by using ultrahigh-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-QTOF-MS/MS), and a simultaneous quantification method was established using UPLC-QTrap-MS/MS through multiple reaction monitoring (MRM) and applied to analyze the pharmacokinetics of the multiple major polyphenols of PUL in mice. ResultsThe water extract of PUL with the highest TPC/TFC exhibited the strongest antihyaluronidase effect (IC50 = 231.93 μg/mL). In vivo assays indicated that the oral administration of PUL water extract dose-dependently attenuated ACD-like symptoms by decreased interleukin (IL)-4, IL-5, IL-13, IL-33, thymic stromal lymphopoietin, and IgE production, suppressed eosinophil and basophil secretion, and increasing the expression of tight junction (TJ) proteins (claudin-1 [CLDN-1] and occludin). Concomitantly, UPLC–QTOF–MS/MS analysis enabled the identification of 60 polyphenols and the pharmacokinetic parameters of seven quantified constituents of PUL were characterized. Four compounds, trans-p-coumaric acid 4-O-β-D-glucopyranoside (11), vicenin-2 (21), isoschaftoside (31), and kaempferol 3-O-(2″,6″-di-O-α-L-rhamnopyransoyl)-β-D-glucopyranoside (38) which displayed satisfactory pharmacokinetic features, were considered as potential effective substances in PUL. ConclusionsPUL water extract ameliorated the allergic inflammation of ACD by repairing the epithelial barrier and alleviating Th2-type allergic inflammation. The anti-allergic effect of PUL is closely related to its phenolic substances, and compounds 11, 21, 31, and 38 were the active substances of PUL. It revealed that P. utilis could be developed as a new source of antiallergic agents for ACD therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call