Abstract

AbstractThe different factors that control the alkene Prins cyclization catalyzed by iron(III) salts have been explored by means of a joint experimental–computational study. The iron(III) salt/trimethylsilyl halide system has proved to be an excellent promoter in the synthesis of crossed all‐cisdisubstituted tetrahydropyrans, minimizing the formation of products derived from side‐chain exchange. In this iron(III)‐catalyzed Prins cyclization reaction between homoallylic alcohols and non‐activated alkenes, two mechanistic pathways can be envisaged, namely the classical oxocarbenium route and the alternative [2+2] cycloaddition‐based pathway. It is found that the [2+2] pathway is disfavored for those alcohols having non‐activated and non‐substituted alkenes. In these cases, the classical pathway, via the key oxocarbenium ion, is preferred. In addition, the final product distribution strongly depends upon the nature of the substituent adjacent to the hydroxy group in the homoallylic alcohol, which can favor or hamper a side 2‐oxonia‐Cope rearrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.