Abstract
Traditional methods of bridge deck condition assessment are slow, labor‐intensive, intrusive to traffic, and unreliable. Two new technologies, radar and infrared thermography, which have recently been introduced, show promise for producing rapid and accurate condition assessment for bridge decks. These technologies are being applied without the benefit of a firm physical understanding of their inherent capabilities and limitations. This paper discusses the physical principles upon which these techniques are based, and proposes simple physical models for the prediction of radar and infrared response to various bridge deck conditions. Parameter studies are carried out using these models to predict the radar and infrared response to moisture, chloride, delamination, and deck geometry. The model study results show the range of sensitivity and the inherent limitations of these two techniques. These results have led to the suggestion of a predictive technique that has been used in field studies of repaired and ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.