Abstract

Comparative kinetic analysis of inactivation of bacteriophage MS2 infectivity and aminoalkylation of a model protein (trypsin inhibitor) with oligoaziridines was performed in order to evaluate the selectivity of viral RNA modification with oligocationic reagents. The transition from ethyleneimine monomer to di-, tri-, and tetramer leads to a sharp increase in the rate constant of infectivity inactivation, whereas the rate constant of protein modification changes insignificantly. The selectivity coefficient of the phage RNA aminoalkylation relative to trypsin inhibitor modification increases in this series by more than an order of magnitude. This effect is probably associated with the strengthening of the reagent binding to the nucleic acid, which implies a reaction mechanism that involves the formation of a reactive intermediate. The latter might be an electrostatic complex of the oligocationic reagent and RNA, the only polyanion in the virion. A pronounced decrease in the rate constant of infectivity inactivation in the presence of multiply charged anions (in phosphate buffer) and a biogenic polyamine (spermine) favors this hypothesis. Increasing the reaction temperature increases the rate constant of infectivity inactivation and decreases selectivity of the viral RNA modification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.